INTRODUCTION

- People have a drive for maximising action efficiency [1]
- If given a choice, people will choose the easier route for themselves [2]
- In joint actions, people will maximise efficiency of joint action, sometimes compromising individual efficiency [3]

How are conflicts between fairness and task efficiency resolved?
Do individuals distribute tasks in a way that maximises overall efficiency or is fairest to both people?

EFFICIENCY

- N=24
- Only unfair to Other - no chance of reciprocity

<table>
<thead>
<tr>
<th>Condition</th>
<th>Self</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Congruent</td>
<td>β=1.94, SE=0.08, z=19.30, p<.001</td>
<td>β=0.02, SE=0.13, z=0.14, p=.890</td>
</tr>
<tr>
<td>Equal</td>
<td>β=0.06, SE=0.07, z=15.70, p<.001</td>
<td>β=1.93, SE=0.14, z=14.67, p<.001</td>
</tr>
</tbody>
</table>

REFERENCES

CONCLUSIONS

- Prioritisation of efficiency in joint actions
- Consistent use of co-efficiency maximising strategy regardless of unfairness
- Even when no chance of reciprocity (no disadvantage to self)
- Joint efficiency over individual efficiency
- Movement speed drops when giving a partner – not oneself – an unfair task distribution
- Hesitating to be unfair but doing it anyway

FAIRNESS

- People are sensitive to fairness – judge unfair actors harshly, prefer fair interaction partners [4-5]
- Strong reputational motivation to be seen as fair [6-7]
- Little research on whether people choose to be fair

EFFICIENCY

- N=24
- Congruent:
 - β=1.45, SE=0.08, z=19.30, p<.001
 - β=0.16, SE=0.06, z=2.77, p=.006
- Equal:
 - β=1.06, SE=0.07, z=15.70, p<.001
 - β=0.19, SE=0.14, z=147
- Incongruent:
 - β=1.84, SE=0.09, z=40.39, p<.001
 - β=0.01, SE=0.04, z=0.25, p=.803

REFERENCES